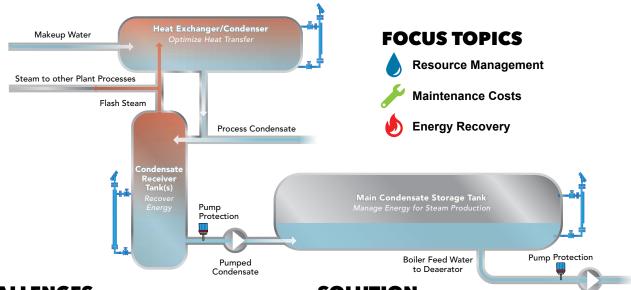
CONDENSATE AND WASTE HEAT RECOVERY SAVINGS

CUSTOMER PROFILE

INDUSTRY: Utilities/Steam Generation

LOCATION: Chemical, Pulp & Paper, Metals,

Refining, Food & Beverage, etc.


APPLICATION: Condensate and Waste Heat Recovery

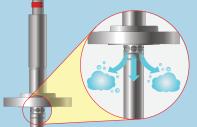
System: receiver/flash & storage tanks,

heat exchangers/condensers

ICEBREAKER

"If Magnetrol can reduce hidden maintenance costs and energy losses in your condensate and waste heat recovery process, would this help meet the financial expectations of the system?"

CHALLENGES


Realizing the financial expectations of your condensate and waste heat recovery system investment:

- Implementing advanced technology level solutions with minimal work force training
- Managing real-time operational situations with a high degree of data certainty: confidence in level indication
- Eliminating potential, hidden maintenance costs associated with a level technologies vulnerabilities to process dynamics and subsequent damage to expensive hardware
- Managing the consumption of natural resources and associated costs to include water, water treatment and discharge, fuel and chemicals.
- Identifying the variables in the "level measurement equation" that contribute to a technologies' total lifecycle cost
- Translating system performance to optimize boiler performance and utilization

SOLUTION

Leverage generations of Magnetrol experience and expertise to optimize overall system performance using advanced level technologies strategically placed throughout the system

- Improve heat exchanger/condenser performance (energy transfer) by eliminating variables associated with an existing level technologies' performance on aggressive steam applications
- Better management of flash/receiver and blow down tank capacity to maximize recovery of available energy in condensate in the form of flash steam
- Prevent direct exposure of pumps & pump seals to high temperature steam resulting from poor level control on receiver/flash tanks
- Eliminate avenues for potential level measurement errors and reduce periodic maintenance inspection (PMI) intervals: calibration, external corrections, process dynamics, ambient conditions and hardware complexity
- Better manage condensate inventory to ensure sufficient supply to meet steam generation demands

Steam probe with condensation control technology (CCT) and automatic steam compensation (ASC)

RESULTS

Meet or exceed the return-on-investment (ROI) expectations in months, not years

- · Reduced environmental footprint through improved resource management (water, chemicals & fuel)
- Lower operational costs by better managing controllable losses: optimized waste heat recovery through enhanced heat exchanger/condenser performance
- Extended hardware longevity (pumps & pump seals) by leveraging the inherent advantages of advanced level technologies and low cost, redundant protective measures
- · Lower installation, commissioning and lifecycle (periodic maintenance requirements) costs
- Minimize production downtime due to issues associated with more traditional type level controls

